672 research outputs found

    Campus Community Health Assessments Using Ambulatory Blood Pressure Monitoring

    Get PDF
    Background and Purpose: Ambulatory blood pressure monitoring (ABPM), frequently used by bio-anthropologists as a research tool, provides a detailed assessment of daily blood pressure variation in response to activity and mood. The purpose of this study was to explore associations between ADLs, blood pressure, and health risk behaviors, including nicotine, using ABPM. This study was guided by Pender’s Health Promotion Model. Methods: This cross-sectional descriptive study with a case control group and convenience sample used survey methodology and biometric data collection. Data were analyzed using SPSS 25 and statistical tests appropriate to each research hypothesis. Results: University campus members (N=61) were recruited. Researchers referred 23.8% (N = 15) to primary care providers (PCP) for assessment and treatment of blood pressure. Of these, 47% (N = 7) were nicotine users; 53% (N = 8) were non-users. 3% of nicotine users (N = 2) asked for nicotine replacement therapy and referral to employee assistance. Conclusions & Implications: Sample demographics suggest that nicotine, especially vaping, is more prevalent among college students than staff. Many participants required referral to PCP, indicating an unmet need for cardiovascular health screenings. This warrants further study to determine causal factors and the role of campus health in its solution.https://orb.binghamton.edu/research_days_posters_spring2020/1057/thumbnail.jp

    ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format

    Get PDF
    BACKGROUND AND MOTIVATION: The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. RESULTS: We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. CONCLUSION: The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption

    Mechanical modeling of initiation of localized yielding under plane stress conditions in rigid-rigid polymer alloys

    Full text link
    Two-dimensional Finite Element Method simulations, which involve consideration of the nonlinearity of a material, have been conducted to gain understanding about the rigid-rigid polymer toughening concept we proposed. The simulation results for the plane stress condition indicate that as long as the inclusion phase possesses (i) a 60% difference in the tangent modulus from that of the matrix at any given strain level prior to failure or (ii) smaller yield or craze stain than the yield strain of the matrix, then, localized shear yielding will occur around the inclusion. A toughened rigid-rigid polymer alloy system can then be obtained. The plain strain case is also discussed with an implementation of the rigid-rigid polymer toughening concept.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38110/1/760311106_ftp.pd

    Task-based Parallel Computation of the Density Matrix in Quantum-based Molecular Dynamics using Graph Partitioning

    Get PDF
    Quantum-based molecular dynamics (QMD) is a highly accurate and transferable method for material science simulations. However, the time scales and system sizes accessible to QMD are typically limited to picoseconds and a few hundred atoms. These constraints arise due to expensive self-consistent ground-state electronic structure calculations that can often scale cubically with the number of atoms. Linearly scaling methods depend on computing the density matrix P from the Hamiltonian matrix H by exploiting the sparsity in both matrices. The second-order spectral projection (SP2) algorithm is an O(N) algorithm that computes P with a sequence of 40-50 matrix-matrix multiplications. In this paper, we present task-based implementations of a recently developed data-parallel graph-based approach to the SP2 algorithm, G-SP2. We represent the density matrix P as an undirected graph and use graph partitioning techniques to divide the computation into smaller independent tasks. The partitions thus obtained are generally not of equal size and give rise to undesirable load imbalances in standard MPI-based implementations. This load-balancing challenge can be mitigated by dynamically scheduling parallel computations at runtime using task-based programming models. We develop task-based implementations of the data-parallel G-SP2 algorithm using both Intel's Concurrent Collections (CnC) as well as the Charm++ programming model and evaluate these implementations for future use. Scaling and performance results of our implementations are investigated for representative segments of QMD simulations for solvated protein systems containing more than 10,000 atoms

    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    Get PDF
    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins
    • …
    corecore